4.4 Review

Vesicular release of ATP at central synapses

期刊

出版社

SPRINGER
DOI: 10.1007/s00424-006-0061-x

关键词

ATP; P2X receptors; synaptic transmission; mEPSCs; vesicular release

资金

  1. Wellcome Trust Funding Source: Medline

向作者/读者索取更多资源

Adenosine triphosphate (ATP) acts as a fast excitatory transmitter in several regions of the central nervous system (CNS) including the medial habenula, dorsal horn, locus coeruleus, hippocampus, and somatosensory cortex. Postsynaptic actions of ATP are mediated through an extended family of P2X receptors, widely expressed throughout the CNS. ATP is released via several pathways, including exocytosis from presynaptic terminals and diffusion through large transmembrane pores (e.g., hemichannels, P2X(7) receptors, or volume-sensitive chloride channels) expressed in astroglial membranes. In presynaptic terminals, ATP is accumulated and stored in the synaptic vesicles. In different presynaptic terminals, these vesicles may contain ATP only or ATP and another neurotransmitter [e.g., gamma-amino-butyric acid (GABA) or glutamate]; in the latter case, two transmitters can be coreleased. Here, we discuss the mechanisms of vesicular release of ATP in the CNS and present our own data, which indicate that in central neuronal terminals, ATP is primarily stored and released from distinct pool of vesicles; the release of ATP is not synchronized either with GABA or with glutamate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据