4.3 Article

Simulation of bubble breakup dynamics in homogeneous turbulence

期刊

CHEMICAL ENGINEERING COMMUNICATIONS
卷 193, 期 8, 页码 1038-1063

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/00986440500354275

关键词

bubble breakup; multiphase flow; numerical simulation; turbulence

向作者/读者索取更多资源

This article presents numerical simulation results for the deformation and breakup of bubbles in homogeneous turbulence under zero gravity conditions. The lattice Boltzmann method was used in the simulations. Homogeneous turbulence was generated by a random stirring force that acted on the fluid in a three-dimensional periodic box. The grid size was sufficiently small that the smallest scales of motion could be simulated for the underlying bubble-free flow. The minimum Weber number for bubble breakup was found to be about 3. Bubble breakup was stochastic, and the average time needed for breakup was much larger for small Weber numbers than for larger Weber numbers. For small Weber numbers, breakup was preceded by a long period of oscillatory behavior during which the largest linear dimension of the bubble gradually increased. For all Weber numbers, breakup was preceded by a sudden increase in the largest linear dimension of the bubble. When the Weber number exceeded the minimum value, the average surface area increased by as much as 80%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据