4.6 Article

Altered cardiac fatty acid composition and utilization following dexamethasone-induced insulin resistance

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00083.2006

关键词

palmitate oxidation; adenosine 5 '-monophosphate-activated protein kinase; acetyl-coenzyme A carboxylase; lipoprotein lipase; polyunsaturated fatty acid

向作者/读者索取更多资源

Altered cardiac fatty acid composition and utilization following dexamethasone-induced insulin resistance. Am J Physiol Endocrinol Metab 291: E420-E427, 2006. First published April 11, 2006; doi:10.1152/ajpendo.00083.2006. - Glucocorticoid therapy is often associated with impaired insulin sensitivity and cardiovascular disease. The present study was designed to evaluate cardiac fatty acid (FA) composition and metabolism following acute dexamethasone (Dex) treatment. Using the euglycemic hyperinsulinemic clamp, rats injected with Dex demonstrated a reduced glucose infusion rate. This whole body insulin resistance was also associated with a heart-specific increase in pyruvate dehydrogenase kinase 4 gene expression and a reduction in the rate of glucose oxidation. Dex treatment increased basal and postheparin plasma lipolytic activity. In the heart, palmitic and oleic acid levels were higher after 4 h of Dex and decreased to control (CON) levels within 8 h. Measurement of polyunsaturated FAs demonstrated a drop in linoleic and gamma-linolenic acid, with an increase in arachidonic acid (AA) after acute Dex injection. Tissue FA can be either oxidized or stored as triglyceride (TG). At 4 h, Dex augmented cardiac TG accumulation. However, this increase in tissue TG could not be maintained, such that at 8 h following Dex, TG declined to CON levels. AMP-activated protein kinase (AMPK) activation is known to promote FA oxidation through its control of acetyl-CoA carboxylase (ACC). Acute Dex promoted ACC phosphorylation, and increased cardiac palmitate oxidation, likely through its effects in increasing AMPK phosphorylation and total AMPK protein and gene expression. Whether these acute effects of Dex on FA oxidation, TG storage, and arachidonic acid accumulation can be translated into increased cardiovascular risk following chronic therapy has yet to be determined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据