4.7 Article

Pyramiding and dissecting disease resistance QTL to barley stripe rust

期刊

THEORETICAL AND APPLIED GENETICS
卷 113, 期 3, 页码 485-495

出版社

SPRINGER
DOI: 10.1007/s00122-006-0314-2

关键词

-

向作者/读者索取更多资源

Quantitative resistance (QR) to disease is usually more durable than qualitative resistance, but its genetic basis is not well understood. We used the barley/barley stripe rust pathosystem as a model for the characterization of the QR phenotype and associated genomic regions. As an intermediate step in the preparation of near-isogenic lines representing individual QTL alleles and combinations of QTL alleles in a homogeneous genetic background, we developed a set of QTL introgression lines in a susceptible background. These intermediate barley near-isogenic (i-BISON) lines represent disease resistance QTL combined in one-, two-, and three-way combinations in a susceptible background. We measured four components of disease resistance on the i-BISON lines: latent period, infection efficiency, lesion size, and pustule density. The greatest differences between the target QTL introgressions and the susceptible controls were for the latter three traits. On average, however, the QTL introgressions also had longer latent periods than the susceptible parent (Baronesse). There were significant differences in the magnitudes of effects of different QTL alleles. The 4H QTL allele had the largest effect, followed by the alleles on 1H and 5H. Pyramiding multiple QTL alleles led to higher levels of resistance in terms of all components of QR except latent period.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据