4.7 Article

Tracking magnetic footpoints with the magnetic induction equation

期刊

ASTROPHYSICAL JOURNAL
卷 646, 期 2, 页码 1358-1391

出版社

IOP Publishing Ltd
DOI: 10.1086/505015

关键词

methods : data analysis; Sun : atmospheric motions; Sun : magnetic fields

向作者/读者索取更多资源

The accurate estimation of magnetic footpoint velocities from a temporal sequence of photospheric magnetograms is critical for estimating the magnetic energy and helicity fluxes through the photosphere. A new technique for determining the magnetic footpoint velocities from a sequence of magnetograms is presented. This technique implements a variational principle to minimize deviations in the magnitude of the magnetic induction equation constrained by an affine velocity profile, which depends linearly on coordinates, within a windowed subregion of the magnetogram sequence. The variational principle produces an overdetermined system that is solved directly by linear least-squares or total least-squares methods. The resulting optical flow field and associated uncertainties are statistically consistent with the magnetic induction equation and the affine velocity profile within this aperture. The general technique has potential for application to other solar data sets where a physical model for the underlying image dynamics can be applied.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据