4.7 Article Proceedings Paper

The meta-hydroxylation step in the phenylpropanoid pathway:: a new level of complexity in the pathway and its regulation

期刊

ENVIRONMENTAL CHEMISTRY LETTERS
卷 4, 期 3, 页码 127-136

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10311-006-0062-1

关键词

cytochrome P450; CYP98; chlorogenic acid; lignin; adaptation

向作者/读者索取更多资源

Together in silico and genetic mining approaches have recently designated the CYP98 family of plant cytochromes P450 as the family of enzymes that catalyzes the meta-hydroxylation step in the phenylpropanoid pathway. This meta-hydroxylation is not catalyzed on the free p-coumaric acid as anticipated, but on its conjugates with shikimic, quinic, or phenyllactic acids. While all CYP98s have in common phenol meta-hydroxylase activity, p-coumaroylshikimate remains their preferred substrate. High expression of CYP98s is detected in lignifying tissues in stems, roots, and siliques. The CYP98A3 gene disruption in Arabidopsis thaliana leads to a drastic inhibition of lignin synthesis, cell growth, and plant development. The metahydroxylation of phenolic precursors is thus essential for higher plant development. Isolation of coding sequences belonging to the CYP98 family from basil, wheat, and extensive functional analysis of the recombinant enzymes, together with CYP98s from other plant taxa, helps shedding some light on mechanisms of P450s evolution. Most importantly, the occurrence of the meta-hydroxylation on esters of shikimic or quinic acids introduces a new biochemical regulation mechanism in the phenylpropanoid pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据