3.8 Article

Atomic geometry and stability of mono-, Di-, and trivacancies in graphene

出版社

JAPAN SOC APPLIED PHYSICS
DOI: 10.1143/JJAP.45.6534

关键词

magic number; vacancy; graphene; LDA

向作者/读者索取更多资源

Stability and atomic geometry of mono-, di-, and trivacancies in graphene sheets are studied by using first-principles calculations. We find that the atomic relaxation substantially contributes to the stability of the vacancies. The monovacancy is found to have a nonplanar structure, i.e., its symmetry is C-1h, while the ideal monovacancy has D-3h symmetry. The divacancy is found to have a 5-8-5 membered ring structure. The trivacancy is also found to have two five membered rings. The energetics of these vacancies are not explained by the conventional dangling-bond counting model, which does not include lattice relaxation. Our calculations show that the divacancy is very stable and is thus expected to be detected under some experimental conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据