4.2 Article

Large-scale atmospheric singularities and summer long-cycle droughts-floods abrupt alternation in the middle and lower reaches of the Yangtze River

期刊

CHINESE SCIENCE BULLETIN
卷 51, 期 16, 页码 2027-2034

出版社

SCIENCE PRESS
DOI: 10.1007/s11434-006-2060-x

关键词

middle and lower reaches of Yangtze River; droughts-floods abrupt alternation; large-scale circulation singularities; long-cycle timescale

向作者/读者索取更多资源

The daily precipitation data at 720 stations over China for the 1957-2003 period during summer (May-August) are used to investigate the summer subseasonal long-cycle droughts-floods abrupt alternation (LDFA) phenomenon and a long-cycle droughts-floods abrupt alternation index (LDFAI) in the middle and lower reaches of the Yangtze River (MLYRV) is defined to quantify this phenomenon. The large-scale atmospheric circulation features in the anomalous LDFA years are examined statistically. Results demonstrate that the summer droughts-to-floods (DTF) in the MLYRV usually accompany with the more southward western Pacific subtropical high (WPSH), negative vorticity, strong divergence, descending movements developing and the weak moisture transport in the low level, the more southward position of the South Asia high (SAH) and the westerly jets in the high level during May-June, but during July-August it is in the other way, northward shift of the WPSH, positive vorticity, strong convergence, ascending movements and strong moisture transport in the low level, and the northward shift of the SAH and the westerly jets in the high level. While for the summer floods-to-droughts (FTD) in the MLYRV it often goes with the active cold air mass from the high latitude, positive vorticity, strong convergence, ascending movement developing and the strong moisture transport in the low level, and the SAH over the Tibetan Plateau in the high level, but during July-August it is often connected with the negative vorticity, strong divergence, descending movements developing and the weak moisture transport in the low level, the remarkable northward shift of the WPSH, the SAH extending northeastward to North China and the easterly jets prevailing in the high level over the MLYRV. In addition, the summer LDFA in the MLYRV is of significant relationship with the Southern Hemisphere annual mode and the Northern Hemisphere annual mode in the preceding February, which offers some predictive signals for the summer LDFA forecasting in the MLYRV.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据