4.7 Article

Random walk approximation of fractional-order multiscaling anomalous diffusion

期刊

PHYSICAL REVIEW E
卷 74, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.74.026706

关键词

-

向作者/读者索取更多资源

Random walks are developed to approximate the solutions of multiscaling, fractional-order, anomalous diffusion equations. The essential elements of the diffusion are described by the matrix-order scaling indexes and the mixing measure, which describes the diffusion coefficient in every direction. Two forms of the governing equation (also called the multiscaling fractional diffusion equation), based on fractional flux and fractional divergence, are considered, where the diffusion coefficient and the drift vary in space. The particle-tracking algorithm is also extended to approximate anomalous diffusion with a streamline-dependent mixing measure, using a streamline-projection technique. In this and other general cases, the random walk method is the only known way to solve the nonhomogeneous equations. Five numerical examples demonstrate the flexibility, simplicity, and efficiency of the random walk method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据