4.5 Article

ACE inhibition prevents myocardial infarction-induced skeletal muscle mitochondrial dysfunction

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 101, 期 2, 页码 385-391

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.01486.2005

关键词

rehabilitation; mitochondria; angiotensin-converting enzyme inhibition

向作者/读者索取更多资源

ACE inhibition prevents myocardial infarction-induced skeletal muscle mitochondrial dysfunction. J Appl Physiol 101: 385 - 391, 2006. First published April 13, 2006; doi: 10.1152/japplphysiol.01486.2005. Heart failure is associated with alterations in cardiac and skeletal muscle energy metabolism resulting in a generalized myopathy. We investigated the molecular and cellular effects of angiotensin-converting enzyme inhibition (ACEi) on skeletal muscle metabolism in infarcted animals. Myocardial infarction (MI) was obtained by left descending coronary artery ligation. Sham, MI, and MI-treated rats (perindopril, 2 mg center dot kg(-1) center dot day(-1) given 7 days after MI) were studied 1 and 4 mo after surgery. Oxygen consumption of white gastrocnemius ( Gas) muscle was studied in saponin-permeabilized fibers, using the main substrates of mitochondrial respiration. mRNA expression of nuclear factors (PGC-1 alpha, NRF-2 alpha, and mtTFA), involved in the transcription of mitochondrial proteins, and of MCIP1, a marker of calcineurin activation, were also determined. Echocardiographic left ventricular fractional shortening was reduced in both MI and perindopril group after 1 and 4 mo, whereas systemic blood pressure was reduced by 16% only in the MI group after 4 mo. The capacity of Gas to oxidize glutamate-malate, glycerol-triphosphate, or pyruvate (-30%, P < 0.01; - 32%, P < 0.05; - 33%, P < 0.01, respectively), was greatly decreased. Furthermore, PGC-1 alpha (-54%), NRF-2 alpha (-45%), and MCIP1 (-84%) gene expression were significantly downregulated. ACEi improved survival, left ventricular function, and blood pressure. Perindopril protected also totally the Gas mitochondrial function and preserved the mRNAs concentration of the mitochondrial transcriptional factors. Moreover, PGC-1 alpha correlated with Gas oxidative capacity (r = 0.48), mitochondrial cytochrome- c oxidase (r = 0.65), citrate synthase (r = 0.45) activities, and MCIP1 expression (r = 0.44). Thus ACEi totally prevented MI-induced alterations of skeletal muscle mitochondrial function and protein expression, halting the development of this metabolic myopathy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据