4.2 Article

Memory T cells in human tumor and chronic inflammatory microenvironments: Sleeping beauties re-awakened by a cytokine kiss

期刊

IMMUNOLOGICAL INVESTIGATIONS
卷 35, 期 3-4, 页码 419-436

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/08820130600755066

关键词

memory T cells; anergy; human lung cancer; IL-12

向作者/读者索取更多资源

Human tumors often progress and spread in spite of the presence of large numbers of CD4+ and CD8+ T cells with activated or memory cell phenotypes. The T cells in the microenvironment of human lung tumors fail to be activated in response to stimulation via the T cell receptor and CD28 under conditions that fully activate T cells derived from the peripheral blood of the cancer patients. A combination of regulatory mechanisms which are also observed in a variety of different chronic inflammatory conditions may contribute to the T cell unresponsiveness, and to their inability to respond to and kill tumor cells. The non-responsiveness of memory T cells isolated from human lung tumors and non-malignant chronic inflammatory tissues can be reversed in vitro by a brief pulse with IL-12, and the local and sustained release of exogenous IL-12 into the microenvironment of human tumor xenografts in SCID mice re-activates the tumor-associated T cells in situ. In the later case, the T cells proliferate, secrete interferon-gamma and initiate a cascade of events that culminate in the eradication of tumor cells from the xenograft. In transplantable and spontaneously developing tumors of mice the injection of a single tumor nodule with IL-12 loaded biodegradable microspheres activates tumor-associated T cells to kill tumor cells in situ, and provokes a systemic antitumor response that results in the eradication of distant metastatic tumor nodules that are not treated with the cytokine. These mice exhibit a systemic tumor specific immunity as they resist a second challenge with the same (but not a different) tumor. These findings suggest that it will be possible to provoke a systemic anti-tumor immunity in cancer patients by the direct injection of IL-12 loaded biodegradable microspheres or liposomes to locally deliver very low but sustained doses of IL-12 into a single tumor site. This strategy which is based upon the ability of IL-12 to re-activate tumor-associated T cells is termed in situ tumor vaccination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据