4.5 Article

Exact simulation of integrate-and-fire models with synaptic conductances

期刊

NEURAL COMPUTATION
卷 18, 期 8, 页码 2004-2027

出版社

M I T PRESS
DOI: 10.1162/neco.2006.18.8.2004

关键词

-

向作者/读者索取更多资源

Computational neuroscience relies heavily on the simulation of large networks of neuron models. There are essentially two simulation strategies: (1) using an approximation method (e.g., Runge-Kutta) with spike times binned to the time step and (2) calculating spike times exactly in an event-driven fashion. In large networks, the computation time of the best algorithm for either strategy scales linearly with the number of synapses, but each strategy has its own assets and constraints: approximation methods can be applied to any model but are inexact; exact simulation avoids numerical artifacts but is limited to simple models. Previous work has focused on improving the accuracy of approximation methods. In this article, we extend the range of models that can be simulated exactly to a more realistic model: an integrate-and-fire model with exponential synaptic conductances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据