4.6 Article

Afterhyperpolarization improves spike programming through lowering threshold potentials and refractory periods mediated by voltage-gated sodium channels

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2006.06.003

关键词

action potential; spike timing precision; spike capacity; refractory period; threshold potential; hyperpolarization and neurons

向作者/读者索取更多资源

Neurons program various patterns of sequential spikes as neural codes to guide animal behavior. Studies show that spike programming (capacity and timing precision) is influenced by inhibitory synaptic inputs and membrane afterhyperpolarization (AHP). Less is clear about how these inhibitory components regulate spike programming, which we investigated at the cortical neurons. Whole-cell current-clamp recording for action potentials and single channel recording for voltage-gated sodium channels (VGSC) were conducted at regular-spiking and fast-spiking neurons in the cortical slices. With quantifying the threshold potentials and refractory periods of sequential spikes, we found that fast-spiking neurons expressing AHP possess lower threshold potentials and shorter refractory periods, and the hyperpolarization pulse immediately after each of spikes lowers threshold potentials and shortens refractory periods at regular-spiking neurons. Moreover, the hyperpolarization pulses shorten the refractory periods for VGSC reactivation and threshold potentials for its sequential activation. Our data indicate that inhibitory components immediately after spikes, such as AHP and recurrent inhibition, improve spike capacity and timing precision via lowering the refractory periods and threshold potentials mediated by voltage-gated sodium channels. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据