4.7 Article

Effective stochastic dynamics on a protein folding energy landscape

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 125, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2229206

关键词

-

向作者/读者索取更多资源

We present an approach to protein folding kinetics using stochastic reaction-coordinate dynamics, in which the effective drift velocities and diffusion coefficients are determined from microscopic simulation data. The resultant Langevin equation can then be used to directly simulate the folding process. Here, we test this approach by applying it to a toy two-state dynamical system and to a funnellike structure-based (G (o) over bar -type) model. The folding time predictions agree very well with full simulation results. Therefore, we have in hand a fast numerical tool for calculating the folding kinetic properties, even when full simulations are not feasible. In addition, the local drift and diffusion coefficients provide an alternative way to compute the free energy profile in cases where only local sampling can be achieved. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据