4.4 Article

Identification of histone H2B as a regulated plasminogen receptor

期刊

BIOCHEMISTRY
卷 45, 期 31, 页码 9463-9474

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi060756w

关键词

-

资金

  1. NHLBI NIH HHS [HL 17964] Funding Source: Medline

向作者/读者索取更多资源

Tethering of plasminogen to cell surfaces controls plasmin formation and, thereby, influences pericellular proteolysis and cell migration. Modulation of cellular plasminogen binding sites provides a mechanism for regulation of these events. In this study, two distinct models, phorbol ester-stimulated adhesion of U937 monocytoid cells and culturing of peripheral blood neutrophils, treatments which modulate plasminogen binding sites, have been examined to determine the molecular basis for the upregulation of plasminogen receptors. Membranes were isolated from cell populations, with and without upregulated plasminogen binding capacities, and analyzed by [I-125] plasminogen ligand blotting of gel transfers. Approximately 15 different [I-125] plasminogen-binding proteins were discerned in the membrane fractions, and only relatively minor differences in the intensities of individual bands were noted in the different cell populations. The notable exception was the presence of a 17 kDa band, which was selectively and markedly enhanced in the membranes from cells with enhanced plasminogen binding capacities. The 17 kDa protein was isolated from both cell types, and amino acid sequencing of peptide fragments identified the same protein, histone H2B. Increased expression of histone H2B was observed on stimulated U937 cells and cultured neutrophils by confocal microscopy with an antibody raised to the carboxy-terminal octopeptide sequence of histone H2B. This antibody or its Fab fragments substantially decreased the level of binding of plasminogen to these cultured neutrophils and stimulated U937 cells that exhibited elevated levels of binding but not to nonstimulated cells. Thus, histone H2B represents a regulated plasminogen receptor, which contributes significantly to the plasminogen binding capacity of cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据