4.8 Article

Supercurrent reversal in quantum dots

期刊

NATURE
卷 442, 期 7103, 页码 667-670

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature05018

关键词

-

向作者/读者索取更多资源

When two superconductors are electrically connected by a weak link - such as a tunnel barrier - a zero- resistance supercurrent can flow(1,2). This supercurrent is carried by Cooper pairs of electrons with a combined charge of twice the elementary charge, e. The 2e charge quantum is clearly visible in the height of voltage steps in Josephson junctions under microwave irradiation, and in the magnetic flux periodicity of h/ 2e ( where h is Planck's constant) in superconducting quantum interference devices(2). Here we study supercurrents through a quantum dot created in a semiconductor nanowire by local electrostatic gating. Owing to strong Coulomb interaction, electrons only tunnel one- by- one through the discrete energy levels of the quantum dot. This nevertheless can yield a supercurrent when subsequent tunnel events are coherent(3-7). These quantum coherent tunnelling processes can result in either a positive or a negative supercurrent, that is, in a normal or a pi-junction(8-10), respectively. We demonstrate that the supercurrent reverses sign by adding a single electron spin to the quantum dot. When excited states of the quantum dot are involved in transport, the supercurrent sign also depends on the character of the orbital wavefunctions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据