4.7 Article

The first jets in the universe: Protostellar jets from the first stars

期刊

ASTROPHYSICAL JOURNAL
卷 647, 期 1, 页码 L1-L4

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/507326

关键词

cosmology : theory; early universe; galaxies : formation; ISM : jets and outflows; MHD; stars : formation

向作者/读者索取更多资源

The protostellar jets driven by the formation of the first stars are studied by using three-dimensional MHD nested grid simulations. Starting from a slowly rotating spherical cloud of 5.1 x 10(4) M-circle dot permeated by a uniform, magnetic field, we follow the evolution from the central number density to n(c) = 10(3) cm(-3) to n(c) similar or equal to 10(23) cm(-3). Protostars of similar or equal to 10(-3) M-circle dot are formed at n(c) similar or equal to 10(22) cm(-3), and the magnetic flux density is amplified by 10 orders of magnitude from the initial value. Consequently, the formed protostar has a magnetic field of similar to 10(6) G, which is much larger than the flux density of the present-day counterparts, reflecting the fact that the dissipation of a magnetic field is ineffective in primordial gas clouds. If the initial magnetic field, a B > 10(-9) (n(c)/10(3) cm(-3))(2/3) G, a protostellar jet is launched whose velocity reaches similar to 70 km s(-1). As a result, a fraction (3%-10%) of the accreting matter is blown off from the central region. If this jet continues to sweep out the surrounding gas that otherwise accretes onto the central star or circumstellar disk, the final mass of the first star can be substantially reduced. In addition, dense postshock regions behind the bow shocks are expected to promote chemical reactions, and this provides possible environments for subsequent low-mass star formation in the early universe.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据