4.8 Article

Adjustable fragmentation in laser desorption/ionization from laser-induced silicon microcolumn arrays

期刊

ANALYTICAL CHEMISTRY
卷 78, 期 16, 页码 5835-5844

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac060405n

关键词

-

向作者/读者索取更多资源

Laser-induced silicon microcolumn arrays (LISMA) were developed as matrix-free substrates for soft laser desorption/ionization mass spectrometry (SLDI-MS). When low-resistivity silicon wafers were irradiated in air, sulfur hexafluoride, or water environment with multiple pulses from a 3 x omega mode-locked Nd:YAG laser, columnar structures were formed on the surface. The radii of curvature of the column tips varied with the processing environment, ranging from similar to 120 nm in water, to <1 mu m in SF6, and to similar to 2 mu m in air. In turn, these microcolumn arrays were used as matrix-free soft laser desorption substrates. In SLDI-MS experiments with a nitrogen laser, the microcolumn arrays obtained in water environment readily produced molecular ions for peptides and synthetic polymers at low laser fluence. These surfaces demonstrated the best ion yield among the three arrays. The threshold laser fluence and ion yield were comparable to those observed in matrix-assisted laser desorption/ionization. Low-femtomole sensitivity and similar to 6000 Da mass range were achieved. At elevated laser fluence, efficient in-source decay was observed and extensive peptide sequence information was extracted from the resulting mass spectra. The versatility of LISMA was attributed to confinement effects due to the submicrometer morphology and to the surface, thermal, and optical properties of processed silicon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据