4.6 Article

The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation

期刊

JOURNAL OF APPLIED PHYSICS
卷 100, 期 4, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.2335971

关键词

-

向作者/读者索取更多资源

Through a series of molecular dynamics simulations based on the flexible three-centered water model, this study analyzes the structural changes induced in liquid water by the application of a magnetic field with a strength ranging from 1 to 10 T. It is found that the number of hydrogen bonds increases slightly as the strength of the magnetic field is increased. This implies that the size of a water cluster can be controlled by the application of an external magnetic field. The structure of the water is analyzed by calculating the radial distribution function of the water molecules. The results reveal that the structure of the water is more stable and the ability of the water molecules to form hydrogen bonds is enhanced when a magnetic field is applied. In addition, the behavior of the water molecules changes under the influence of a magnetic field; for example, the self-diffusion coefficient of the water molecules decreases. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据