4.7 Article

Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 70, 期 16, 页码 4080-4094

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2006.06.012

关键词

-

向作者/读者索取更多资源

Plant litter decomposition plays a fundamental role in carbon and nitrogen cycles, provides key nutrients to the soil environment and represents a potentially large positive feedback to atmospheric CO2. However, the full details of decomposition pathways and products are unknown. Here we present the first application of HR-MAS NMR spectroscopy on C-13 and N-15 labeled plant materials, and apply this approach in a preliminary study to monitor the environmental degradation of the pine and wheatgrass residues over time. In HR-MAS, is it possible to acquire very high resolution NMR data of plant biomass, and apply the vast array of multidimensional experiments available in conventional solution-state NMR. High levels of isotopic enrichment combined with HR-MAS significantly enhance the detection limits, and provide a wealth of information that is unattainable by any other method. Diffusion edited HR-MAS NMR data reveal the rapid loss of carbohydrate structures, while two-dimensional (2-D) HR-MAS NMR spectra demonstrate the relatively fast loss of both hydrolysable and condensed tannin structures from all plant tissues studied. Aromatic (partially lignin) and aliphatic components (waxes, cuticles) tend to persist, along with a small fraction of carbohydrate, and become highly functionalized over time. While one-dimensional (1-D) C-13 HR-MAS NMR spectra of fresh plant tissue reflect compositional differences between pine and grass, these differences become negligible after decomposition suggesting that recalcitrant carbon may be similar despite the plant source. Two-dimensional H-1-N-15 HR-MAS NMR analysis of the pine residue suggests that nitrogen from specific peptides is either selectively preserved or used for the synthesis of what appears to be novel structures. The amount of relevant data generated from plant components in situ using HR-MAS NMR is highly encouraging, and demonstrates that complete assignment will yield unprecedented structural knowledge of plant cell components, and provide a powerful tool with which to assess carbon sequestration and transformation in the environment. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据