4.3 Article

YASSPP: Better kernels and coding schemes lead to improvements in protein secondary structure prediction

期刊

出版社

WILEY
DOI: 10.1002/prot.21036

关键词

structural bioinformaticsl; proteins; machine learning; support vector machines

向作者/读者索取更多资源

The accurate prediction of a protein's secondary structure plays an increasingly critical role in predicting its function and tertiary structure, as it is utilized by many of the current state-of-the-art methods for remote homology, fold recognition, and ab initio structure prediction. We developed a new secondary structure prediction algorithm called YASSPP, which uses a pair of cascaded models constructed from two sets of binary SVM-based models. YASSPP uses an input coding scheme that combines both position-specific and nonposition-specific information, utilizes a kernel function designed to capture the sequence conservation signals around the local window of each residue, and constructs a second-level model by incorporating both the three-state predictions produced by the first-level model and information about the original sequence. Experiments on three standard datasets (RS126, C13513, and EVA common subset 4) show that YASSPP is capable of producing the highest Q3 and SOV scores than that achieved by existing widely used schemes such as PSIPRED, SSPro 4.0, SAM-T99sec, as well as previously developed SVM-based schemes. On the EVA dataset it achieves a Q3 and SOV score of 79.34 and 78.65%, which are considerably higher than the best reported scores of 77.64 and 76.05%, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据