4.8 Article

Approaches to quantifying and visualizing polyelectrolyte multilayer film formation on particles

期刊

ANALYTICAL CHEMISTRY
卷 78, 期 16, 页码 5913-5919

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac060765a

关键词

-

向作者/读者索取更多资源

Colloidal particles prepared by using the layer-by-layer technique are increasingly finding application in diagnostics, drug delivery, and sensing. Herein, we outline methods for applying three established techniques, confocal laser scanning microscopy (CLSM), flow cytometry, and differential interference contrast (DIC) microscopy, to characterize ultrathin films of poly(styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) assembled on silica particles. Both CLSM and flow cytometry require the use of fluorescently labeled polyelectrolytes (PEs). The film homogeneity can be assessed using CLSM, while flow cytometry allows analysis at unparalleled speed (thousands of particles per second) with unprecedented sensitivity (<0.5 fg of adsorbed polymer) of polydispersed particles of different size (similar to 300 nm to tens of micrometers). Using CLSM and flow cytometry measurements, in conjunction with quartz crystal microgravimetry measurements on planar supports, allows quantification of PSS/PAH layer buildup on the particles. Furthermore, flow cytometry and DIC microscopy were used to unequivocally distinguish between silica-core PSS/PAH-shell particles and hollow PSS/PAH capsules obtained following core removal. The techniques outlined here are not limited to measuring PE deposition on solid particles but, in principle, are equally applicable to quantifying the adsorption of other materials (such as DNA, proteins, or nanoparticles) on a variety of particulate systems, including hollow capsules, emulsions, and cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据