4.5 Article

Kinetics of strain-induced structural changes under high pressure

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 110, 期 32, 页码 16035-16046

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp061795k

关键词

-

向作者/读者索取更多资源

A mechanism-based microscale kinetic theory for strain-induced structural changes (SCs) (that includes phase transformations (PTs) and chemical reactions (CRs)) is developed. Time is not an independent parameter in this theory; instead, plastic strain is a time-like parameter. Kinetics depends essentially on the ratio of the yield strengths of phases. Stationary and nonstationary solutions of the kinetic equations are analyzed for various cases, including SCs between two phases in an inert matrix and between three phases in silicon and germanium. A number of experimental phenomena are explained, and material parameters controlling the kinetics of strain-induced SCs are determined. This includes the possibility of intensification (or suppression) of SCs at the initial stage of straining by adding a stronger (or weaker) inert phase, zero pressure hysteresis that however has nothing to do with phase equilibrium pressure, the possibility of obtaining some phases (that cannot be obtained under hydrostatic loading) under strains, and the possibility to obtain some phases under relatively small shear, which disappear under larger shear.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据