4.6 Article

K+-independent actions of diazoxide question the role of inner membrane KATP channels in mitochondrial cytoprotective signaling

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 33, 页码 23733-23739

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M602570200

关键词

-

向作者/读者索取更多资源

Activation by diazoxide and inhibition by 5-hydroxydecanoate are the hallmarks of mitochondrial ATP-sensitive K+ (KATP) channels. Opening of these channels is thought to trigger cyto-protection (preconditioning) through the generation of reactive oxygen species. However, we found that diazoxide-induced oxidation of the widely used reactive oxygen species indicator 2',7'-dichlorodihydrofluorescein in isolated liver and heart mitochondria was observed in the absence of ATP or K+ and therefore independent of KATP channels. The response was blocked by stigmatellin, implying a role for the cytochrome bc(1) complex (complex III). Diazoxide, though, did not increase hydrogen peroxide (H2O2) production (quantitatively measured with Amplex Red) in intact mitochondria, submitochondrial particles, or purified cytochrome bc1 complex. We confirmed that diazoxide inhibited succinate oxidation, but it also weakly stimulated state 4 respiration even in K+-free buffer, excluding a role for KATP channels. Furthermore, we have shown previously that 5-hydroxydecanoate is partially metabolized, and we hypothesized that fatty acid metabolism may explain the ability of this putative mitochondrial KATP channel blocker to inhibit diazoxide-induced flavoprotein fluorescence, commonly used as an assay of KATP channel activity. Indeed, consistent with our hypothesis, we found that decanoate inhibited diazoxide-induced flavoprotein oxidation. Taken together, our data question the mitochondrial KATP channel hypothesis of preconditioning. Diazoxide did not evoke superoxide (which dismutates to H2O2) from the respiratory chain by a direct mechanism, and the stimulatory effects of this compound on mitochondrial respiration and 2',7'-dichlorodihydrofluorescein oxidation were not due to the opening of KATP channels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据