4.5 Article

Temperature and size effects on diffusion in carbon nanotubes

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 110, 期 33, 页码 16332-16336

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp063424+

关键词

-

向作者/读者索取更多资源

We study the self-diffusion of simple gases inside single-walled carbon nanotubes at the zero-loading limit by molecular dynamics simulations. The host-framework flexibility influence is taken into account. In particular, we study the influences of nanotube size and temperature. For the carbon-nanotube radius-dependent self-diffusivities, a maximum is observed, which resembles the so-called levitation effect. This occurs for pores having a radius comparable to the position of the interaction-energy minimum. Surprisingly, the temperature influence is not uniform throughout different pore sizes. Diffusivities are expected to increase with temperature. This effect is observed for carbon nanotubes distinctly larger than the guest molecules. Remarkably, for smaller pores, the self-diffusivities decrease with increasing temperature or exhibit a maximum in the temperature dependence. This effect is caused by competing influences of collision frequency and temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据