4.6 Article

Covalent connection of individualized, neutral, dendronized polymers on a solid substrate using a scanning force microscope

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 12, 期 25, 页码 6542-6551

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200600171

关键词

dendrons; fluorescence spectroscopy; polymers; scanning force microscopy; single-molecule studies

向作者/读者索取更多资源

The synthesis of a neutral, high-molar-mass, acrylamide-based, third-generation dendronized polymer (denpol) with a defined number of azide groups at its periphery is reported. An attach-to route is used in which a first-generation denpol is reacted with second-generation (G2) dendrons. The degree of structure perfection of the resulting denpol is quantified as 99.8%. This value was obtained after the introduction of a fluorescence label at the sites that remained unaffected by the dendronization. The high coverage was independently confirmed for the dendronization of another first-generation polymer and a closely related G2 dendron. The third-generation denpol resulting from the first dendronization experiment was spin-coated as a sub-monolayer onto highly oriented graphite precoated with an ultrathin layer of C12H25NH2, which was introduced to provide a well-defined substrate for denpol adsorption and manipulation. Scanning force microscopy revealed single denpols, which could be moved across the surface and welded by covalent cross-linking induced by photochemical decomposition of the azides into highly reactive nitrenes. The successful formation of covalent bonds between two denpols was confirmed by mechanically challenging the link with the scanning force microscope (SFM) tip. This is the second reported case of a move-connect-prove sequence using polymers and the SFM, which for the first time employs noncharged denpols, thus widening the applicability of this method significantly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据