4.7 Article

Efficient implementation of the fast multipole method

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 125, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2244565

关键词

-

向作者/读者索取更多资源

A number of computational techniques are described that reduce the effort related to the continuous fast multipole method, used for the evaluation of Coulomb matrix elements as needed in Hartree-Fock and density functional theories. A new extent definition for Gaussian charge distributions is proposed, as well as a new way of dividing distributions into branches. Also, a new approach for estimating the error caused by truncation of multipole expansions is presented. It is found that the use of dynamically truncated multipole expansions gives a speedup of a factor of 10 in the work required for multipole interactions, compared to the case when all interactions are computed using a fixed multipole expansion order. Results of benchmark calculations on three-dimensional systems are reported, demonstrating the usefulness of our present implementation of the fast multipole method. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据