4.7 Article

Forming chainlike filaments of magnetic colloids:: The role of the relative strength of isotropic and anisotropic particle interactions

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 125, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2220561

关键词

-

向作者/读者索取更多资源

The influence of the interplay between anisotropic magnetic and isotropic electrostatic interactions on the aggregation behavior of aqueous suspensions of electric double layered magnetic particles was studied. Therefore, the particles were aggregated under the action of an external magnetic field and in the presence of different amounts of an indifferent 1:1 electrolyte. After removing the field, linear aggregates remained in the sample. Static light scattering and electron micrographs confirmed the chainlike cluster morphology. Dynamic light scattering was used for monitoring the average diffusion coefficient of these magnetic filaments. A theoretical model that allows the experimental mean diffusion coefficient to be related to the average chain length was successfully employed. The results show that, at fixed exposure time and field strength, the average filament size is proportional to the amount of electrolyte added. The light scattering data and transmission electron microscopy micrographs prove that permanent chains coexist with a relatively large fraction of individual particles when no or little electrolyte was added to the samples. A plausible explanation for this selective aggregation phenomenon could be given in terms of surface charge heterogeneities. The chain growth was found to follow a power law with a similar exponent for all the electrolyte concentrations studied. Scaling theories were employed for estimating the ratio of particles taking part in the aggregation process. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据