4.6 Article

Expert-driven semi-automated geomorphological mapping for a mountainous area using a laser DTM

期刊

GEOMORPHOLOGY
卷 78, 期 3-4, 页码 309-320

出版社

ELSEVIER
DOI: 10.1016/j.geomorph.2006.01.037

关键词

laser DTM; object-oriented classification; geomorphological mapping; mountainous area

向作者/读者索取更多资源

In this paper a semi-automated method is presented to recognize and spatially delineate geomorphological units in mountainous forested ecosystems, using statistical information extracted from a 1-m resolution laser digital elevation dataset. The method was applied to a mountainous area in Austria. First, slope angle and elevation characteristics were determined for each key geomorphological unit occurring in the study area. Second, a map of slope classes, derived from the laser DTM was used in an expert-driven multilevel object-oriented approach. The resulting classes represent units corresponding to landforms and processes commonly recognized in mountain areas: Fluvial terrace, Alluvial Fan, Slope with mass movement, Talus slope, Rock cliff, Glacial landform, Shallow incised channel and Deep incised channel. The classification result was compared with a validation dataset of geomorphological units derived from an analogue geomorphological map. For the above mentioned classes the percentages of correctly classified grid cells are 69%, 79%, 50%, 64%, 32%, 61%, 23% and 70%, respectively. The lower values of 32% and 23% are mainly related to inaccurate mapping of rock cliffs and shallow incised channels in the analogue geomorphological map. The accuracy increased to 76% and 54% respectively if a buffer is applied to these specific units. It is concluded that high-resolution topographical data derived from laser DTMs are useful for the extraction of geomorphological units in mountain areas. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据