4.6 Article

Caffeic acid suppresses UVB radiation-induced expression of interleukin-10 and activation of mitogen-activated protein kinases in mouse

期刊

CARCINOGENESIS
卷 27, 期 9, 页码 1803-1811

出版社

OXFORD UNIV PRESS
DOI: 10.1093/carcin/bgl006

关键词

-

类别

向作者/读者索取更多资源

Ultraviolet B (UVB) radiation present in sunlight causes sustained immune suppression, photocarcinogenesis and photoaging in humans. Interleukin-10 (IL-10) plays a critical role in UVB-induced immune suppression by inhibiting cell-mediated immune reactions. Mitogen-activated protein kinases (MAPKs) have been implicated in UVB-induced skin carcinogenesis. Caffeic acid (CA), a phenolic acid present in many dietary plants has been shown to confer antioxidant, anti-inflammatory and anticancer activities. In this study, we evaluated the protective effects of CA against UVB radiation-induced IL-10 expression and phosphorylation of MAPKs in mouse skin. An in vivo transgenic IL-10 promoter-luciferase-reporter gene based assay revealed that CA inhibits the transcriptional activation of UVB-induced IL-10 promoter. This was further confirmed by significant inhibition of UVB radiation-induced IL-10 mRNA expression and protein production by CA in mouse skin. Contact hypersensitivity assay showed that CA could attenuate the local immune suppression induced by UVB radiation against a hapten, dinitrofluorobenzene. Our results indicated that CA might inhibit IL-10 production by interfering with an early step, prostaglandin E-2 synthesis, in the activation of UVB-induced immune suppressive cytokine cascade. CA also significantly inhibited the UVB-induced activation of MAPK signal transduction pathways, such as extracellular signal-regulated protein kinase, c-Jun N-terminal protein kinase and p38 mitogen-activated protein kinase, and the downstream transcription factors activator protein-1 and nuclear factor-kappa B. The findings of our study suggest that CA may confer significant protection against UVB-induced immune suppression and photocarcinogenesis in vivo and provide the possible underlying molecular basis for its actions. Therefore, CA may have therapeutic potential as a topical protective agent against the deleterious effects of UVB radiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据