4.5 Article

The biocompatibility and osteoconductivity of a cement containing β-TCP for use in vertebroplasty

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.30793

关键词

osteoconduction; calcium phosphate; biocompatibitity; bone cement; histology

向作者/读者索取更多资源

A new composite bone cement designated G2B1 was developed for percutaneous transpedicular vertebroplasty. G2B1 contains beta tricalcium phosphate particles and methylmethacrylate-methylacrylate copolymer as the powder components, and methylmethacrylate, urethane dimethacrylate, and tetrahydrofurfuryl methacrylate as the liquid components. Biocompatibility and osteoconductivity were evaluated using scanning electron microscopy, contact microradiography, and Giemsa surface staining 4, 8, 12, 26, and 52 weeks after implantation into rat tibiae. To evaluate osteoconductivity, affinity indices (%) were calculated. Scanning electron microscopy and contact microradiography revealed that bone contact with G2B1 was attained within 4 weeks (affinity index: 50.2 +/- 11.8 at 4 weeks) and at most of the margin within 26 weeks (affinity index: 87.4 +/- 7.2 at 26 weeks). Specifically, G2B1 contacted bone via a wide calcium-phosphate-rich layer, and its degradation started within 8 weeks, mainly in the marginal area. Giemsa surface staining showed that there was almost no inflammatory reaction around the G2B1. These results indicate that G2B1 is a biocompatible and osteoconductive bone cement. (c) 2006 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据