4.7 Article

Loss of function of COBRA, a determinant of oriented cell expansion, invokes cellular defence responses in Arabidopsis thaliana

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 57, 期 12, 页码 2923-2936

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erl052

关键词

cell elongation; cell wall; COBRA; defence; jasmonic acid; whole transcriptome

资金

  1. NIGMS NIH HHS [R01 GM 57795] Funding Source: Medline

向作者/读者索取更多资源

An Arabidopsis T-DNA insertion mutant that results in complete loss-of-function of the COBRA gene has been identified. The COBRA gene encodes a putative glycosylphosphatidylinositol (GPI)-anchored protein that modulates cellulose deposition and oriented cell expansion in roots. The loss-of-function mutant allele (named 'cob-5') exhibits abnormal cell growth throughout the entire plant body and accumulates massive amounts of stress response chemicals such as anthocyanins and callose. To gain further insight into the mechanism by which COBRA affects cell growth and physiology, the whole-genome gene expression profile of cob-5 plants was compared with that of wild-type plants. Consistent with the mutant phenotype, many genes involved in anthocyanin biosynthesis were up-regulated in the cob-5 plants, whereas genes involved in cell elongation were down-regulated. The most striking feature of the gene expression profile of cob-5 was the massive and co-ordinate induction of defence- and stress-related genes, many of which are regulated by the plant stress signal jasmonic acid (JA). Indeed, the cob-5 plants over-accumulated JA by nearly 8-fold compared with wild-type plants. Furthermore, induction of cell elongation defects in conditional allele cob-3 plants triggers the expression of a defence-responsive gene. These results provide potential clues to the mechanisms by which plant cells initially perceive biotic stress at the cell surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据