4.6 Article

Rare-earth elements in the atmosphere of the magnetic chemically peculiar star HD 144897

期刊

ASTRONOMY & ASTROPHYSICS
卷 456, 期 1, 页码 329-U63

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20065367

关键词

stars : magnetic fields; stars : abundances; stars : chemically peculiar; stars : individual : HD 144897; atomic data

向作者/读者索取更多资源

Context. The chemically peculiar stars of the upper main sequence represent a natural laboratory for the study of rare- earth elements (REE). Aims. We want to check the reliability of the energy levels and atomic line parameters for the second REE ions currently available in the literature, and obtained by means of experiments and theoretical calculations. Methods. We have obtained a UVES spectrum of a slowly rotating strongly magnetic Ap star, HD 144897, that exhibits very large overabundances of rare- earth elements. Here we present a detailed spectral analysis of this object, taking effects of non- uniform vertical distribution (stratification) of chemical elements into account. Results. We determined the photospheric abundances of 40 ions. For seven elements (Mg, Si, Ca, Ti, Cr, Mn, Fe), we obtained a stratification model that allows us to produce a satisfactory fit to the observed profiles of spectral lines of various strengths. All the stratified elements but Cr show a steep decrease in concentration toward the upper atmospheric layers; for Cr the transition from high to low concentration regions appears smoother than for the other elements. The REEs abundances, which have been determined for the first time from the lines of the first and second ions, have been found typically four dex higher than solar abundances. Our analysis of REE spectral lines provides strong support for the laboratory line classification and determination of the atomic parameters. The only remarkable exception is Nd III, for which spectral synthesis was found to be inconsistent with the observations. We therefore performed a revision of the Nd III classification. We confirmed the energies for 11 out of 24 odd energy levels that were classified previously, and derived the energies for additional 24 levels of Nd III, thereby substantially increasing the number of classified Nd III lines with corrected wavelengths and atomic parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据