4.5 Article

A model for the circadian rhythm of cyanobacteria that maintains oscillation without gene expression

期刊

BIOPHYSICAL JOURNAL
卷 91, 期 6, 页码 2015-2023

出版社

BIOPHYSICAL SOCIETY
DOI: 10.1529/biophysj.105.076554

关键词

-

向作者/读者索取更多资源

An intriguing property of the cyanobacterial circadian clock is that endogenous rhythm persists when protein abundances are kept constant either in the presence of translation and transcription inhibitors or in the constant dark condition. Here we propose a regulatory mechanism of KaiC phosphorylation for the generation of circadian oscillations in cyanobacteria. In the model, clock proteins KaiA and KaiB are assumed to have multiple states, regulating the KaiC phosphorylation process. The model can explain 1), the sustained oscillation of gene expression and protein abundance when the expression of the kaiBC gene is regulated by KaiC protein, and 2), the sustained oscillation of phosphorylated KaiC when transcription and translation processes are inhibited and total protein abundance is fixed. Results of this work suggest that KaiA and KaiB strengthen the nonlinearity of KaiC phosphorylation, thereby promoting the circadian rhythm in cyanobacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据