4.6 Article

Joint-based control of a new Eulerian network model of air traffic flow

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCST.2006.876904

关键词

adjoint-based optimization; control of partial differential equations; LWR PDE

向作者/读者索取更多资源

An Eulerian network model for air traffic flow in the National Airspace System is developed and used to design flow control schemes which,could be used by Air Traffic Controllers to optimize traffic flow. The model relies on a modified version of the Lighthill-Whitham-Richards (LWR) partial differential equation (PDE), which contains a velocity control term inside the divergence operator. This PDE can be related to aircraft count, Which is a key metric in air traffic control. An analytical solution to the LWR PDE is constructed for a benchmark problem, to assess the gridsize required to compute a numerical solution at a prescribed accuracy. The Jameson-Schmidt-Turkel (JST) scheme is selected among other numerical schemes to perform simulations, and evidence of numerical convergence is assessed against this analytical solution. Linear numerical schemes are discarded because of their poor performance. The model is validated against actual air traffic data (ETMS data), by showing that the Eulerian description enables good aircraft count predictions, provided a good choice of numerical parameters is made. This model is then embedded as the key constraint in an optimization problem, that of maximizing the throughput at a destination airport while maintaining aircraft density below a legal threshold in a set of sectors of the airspace, The optimization problem is solved by constructing the adjoint problem of the linearized network control problem, which provides an explicit formula for the gradient. Constraints are enforced using a logarithmic barrier. Simulations of actual air traffic data and control scenarios involving several airports between Chicago and the U.S. East Coast demonstrate the feasibility of the method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据