4.7 Article

Comparison between sonodynamic effect and photodynamic effect with photo sensitizers on free radical formation and cell killing

期刊

ULTRASONICS SONOCHEMISTRY
卷 13, 期 6, 页码 535-542

出版社

ELSEVIER
DOI: 10.1016/j.ultsonch.2005.10.001

关键词

sonodynamic therapy; photodynamic therapy; ultrasound; U937 cells; singlet oxygen; free radicals; rhodamine derivatives

向作者/读者索取更多资源

Although enhancement of ultrasound-induced cell killing by photodynamic reagents has been shown, the sonochemical mechanism in detail is still not clear. Here, comparison between sonodynamic effect and photodynamic effect with photosensitizers at a concentration of 10 mu M on free radical formation and cell killing was made. When electron paramagnetic-resonance spectroscopy (EPR) was used to detect 2,2,6,6-tetramethyl-4-piperidone-N-oxyl (TAN) after photo-irradiation or sonication with 2,2,6,6-tetramethyl-4-piperidone (TMPD), the order of TAN formation in the photo-irradiated samples was as follows: thodamine 6G (R6) > sulforhodamine B (SR) > hematoporphyrin (Hp) > rhodamine 123 (R 123) > rose bengal (RB) > erythrosine B (Er) = 0; although there was time-dependent TAN formation when the samples were sonicated, no significant difference among these agents were observed. All these agents suppressed ultrasound-induced OH radical formation detected by EPR-spin trapping. Sensitizer-derived free radicals were markedly observed in SR, RB and Er, while trace level of radicals derived from R6 and R123 were observed. Enhancement of ultrasound-induced decrease of survival in human lymphoma U937 cells was observed at 1.5 W/cm(2) (less than inertial cavitation threshold) for R6, R123, SR and Er, and at 2.3 W/cm(2) for R6, R123, Er, RB and SR. On the other hand, photo-induced decrease of survival was observed for R6, Hp and RB at the same concentration (10 mu M). These comparative results suggest that (1) O-1(2) is not involved in the enhancement of ultrasound-induced loss of cell survival, (2) OH radicals and sensitizer-derived free radicals do not take part in the enhancement, and (3) the mechanism is mainly due to certain mechanical stress such as augmentation of physical disruption of cellular membrane by sensitizers in the close vicinity of cells and/or cavitation bubbles. (C) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据