4.6 Article

Calculating charge-carrier mobilities in disordered semiconducting polymers: Mean field and beyond

期刊

PHYSICAL REVIEW B
卷 74, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.74.115204

关键词

-

向作者/读者索取更多资源

We model charge transport in disordered semiconducting polymers by hopping of charges on a regular cubic lattice of sites. A large on-site Coulomb repulsion prohibits double occupancy of the sites. Disorder is introduced by taking random site energies from a Gaussian distribution. Recently, it was demonstrated that this model leads to a dependence of the charge-carrier mobilities on the density of charge carriers that is in agreement with experimental observations. The model is conveniently solved within a mean-field approximation, in which the correlation between the occupational probabilities of different sites is neglected. This approximation becomes exact in the limit of vanishing charge-carrier densities, but needs to be checked at high densities. We perform this check by dividing the lattice in pairs of neighboring sites and taking into account the correlation between the sites within each pair explicitly. This pair approximation is expected to account for the most important corrections to the mean-field approximation. We study the effects of varying temperature, charge-carrier density, and electric field. We demonstrate that in the parameter regime relevant for semiconducting polymers used in practical devices the corrections to the mobilities calculated from the mean-field approximation will not exceed a few percent, so that this approximation can be safely used.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据