4.6 Article

Toward computational materials design: The impact of density functional theory on materials research

期刊

MRS BULLETIN
卷 31, 期 9, 页码 659-665

出版社

SPRINGER HEIDELBERG
DOI: 10.1557/mrs2006.174

关键词

computation; density functional theory; modeling; nanoscale; simulation

向作者/读者索取更多资源

The development of modern materials science has led to a growing need to understand the phenomena determining the properties of materials and processes on an atomistic level. The interactions between atoms and electrons are governed by the laws of quantum mechanics; hence, accurate and efficient techniques for solving the basic quantum-mechanical equations for complex many-atom, many-electron systems must be developed. Density functional theory (DFT) marks a decisive breakthrough in these efforts, and in the past decade DFT has had a rapidly growing impact not only on fundamental but also industrial research. This article discusses the fundamental principles of DFT and the highly efficient computational tools that have been developed for its application to complex problems in materials science. Also highlighted are state-of-the-art applications in many areas of materials research, such as structural materials, catalysis and surface science, nanomaterials, and biomaterials and geophysics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据