4.5 Article

Repair of motor nerve gaps with sensory nerve inhibits regeneration in rats

期刊

LARYNGOSCOPE
卷 116, 期 9, 页码 1685-1692

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/01.mlg.0000229469.31749.91

关键词

axon guidance; nerve regeneration; peripheral nerve; preferential motor reinnervation; nerve graft

资金

  1. NINDS NIH HHS [5-R01 NS33406-10] Funding Source: Medline

向作者/读者索取更多资源

Objective: Sensory nerve grafts are often used to reconstruct injured motor nerves, but the consequences of such motor/sensory mismatches are not well studied. Sensory nerves have more diverse fiber distributions than motor nerves and may possess phenotypically distinct Schwann cells. Putative differences in Schwann cell characteristics and pathway architecture may negatively affect the regeneration of motor neurons down sensory pathways. We hypothesized that sensory grafts impair motor target reinnervation, thereby contributing to suboptimal outcomes. This study investigated the effect of motor versus sensory grafts on nerve regeneration and functional recovery. Study Design: The authors conducted a prospective, randomized, controlled animal study. Methods: Fifty-six Lewis rats were randomized to seven groups of eight animals each. Five-millimeter tibial nerve defects were reconstructed with motor or sensory nerve grafts comprised of single, double, triple, or quadruple cables. Tibial nerve autografts served as positive controls. Three weeks after reconstruction, nerves were harvested for histologic examination and quantitative histomorphometric analysis. Wet muscle masses provided an index of functional recovery. Results: Nerve regeneration was significantly greater across motor versus sensory nerve grafts independent of graft cross-sectional area or cable number. Motor grafts demonstrated increased nerve density, percent nerve, and total fiber number (P < .05). Normalized wet muscle masses trended toward improved recovery in motor versus sensory groups. Conclusions: Reconstruction of tibial nerve defects with nerve grafts of motor versus sensory origin enhanced nerve regeneration independent of cable number in a rodent model. Preferential nerve regeneration through motor nerve grafts may also promote functional recovery with potential implications for clinical nerve reconstruction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据