4.5 Article

Different signal transduction cascades are activated simultaneously in the rat insular cortex and hippocampus following novel taste learning

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 24, 期 5, 页码 1434-1442

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1460-9568.2006.05009.x

关键词

Akt; C/EBP; consolidation; CREB; ERK; MAPK

向作者/读者索取更多资源

Novel taste learning is a robust one-trial incidental learning process, dependent on functional activity of the insular (taste) cortex. In contrast to that of the cortex, the role of the hippocampus in taste learning is controversial. We set out to identify the time courses of the activation of mitogen-associated protein kinase (MAPK), transcription factor cAMP-response element-binding protein (CREB) and Akt/PKB (protein kinase B) in the insular cortex and hippocampus of rats subsequent to novel taste learning. Following taste learning, an early response (20 min) occurred at the same time in the insular cortex and the hippocampus. However, whereas MAPK was activated specifically in the insular cortex, CREB and Akt were phosphorylated in the hippocampus but not in the cortex. In addition, the immediate early gene, CCAAT/enhancer binding protein (C/EBP beta) was induced in both the hippocampus and the insular cortex 18 h following taste learning. The results demonstrate, for the first time, correlative activation and gene expression in the hippocampus following novel taste learning. Moreover, the results suggest that different signal transduction cascades necessary for taste learning are activated in concert in different brain structures, to enable taste learning and consolidation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据