4.5 Article

Recruitment dynamics of GAK and auxilin to clathrin-coated pits during endocytosis

期刊

JOURNAL OF CELL SCIENCE
卷 119, 期 17, 页码 3502-3512

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.03092

关键词

GAK; auxilin; clathrin; dynamin; TIRF

向作者/读者索取更多资源

Cyclin G-associated kinase (GAK), the ubiquitous form of the neuronal-specific protein auxilin 1, is an essential cofactor for Hsc70-dependent uncoating of clathrin-coated vesicles. Total internal reflectance microscopy was used to determine the timing of GAK binding relative to dynamin and clathrin binding during invagination of clathrin-coated pits. Following transient recruitment of dynamin to the clathrin puncta, large amounts of GAK are transiently recruited. GAK and clathrin then disappear from the evanescent field as the pit invaginates from the plasma membrane and finally these proteins disappear from the epifluorescence field, probably as the clathrin is uncoated from the budded vesicles by Hsc70. The recruitment of GAK is dependent on its PTEN-like domain, which we found binds to phospholipids. This suggests that interaction with phospholipids is essential for recruitment of GAK and, in turn, Hsc70, but Hsc70 recruitment alone might not be sufficient to induce irreversible clathrin uncoating. When budding of clathrin-coated pits is inhibited by actin depolymerization, there is repeated flashing of GAK on the clathrin-coated pit but neither scission nor irreversible uncoating occur. Therefore, budding as well as synchronous recruitment of GAK might be required for irreversible clathrin uncoating.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据