4.5 Article

Reconstitution of the Frank-Starling mechanism in engineered heart tissues

期刊

BIOPHYSICAL JOURNAL
卷 91, 期 5, 页码 1800-1810

出版社

CELL PRESS
DOI: 10.1529/biophysj.105.065961

关键词

-

资金

  1. NIBIB NIH HHS [EB005968] Funding Source: Medline

向作者/读者索取更多资源

According to the Frank-Starling mechanism, as the heart is stretched, it increases its contraction force. Reconstitution of the Frank-Starling mechanism is an important milestone for producing functional heart tissue constructs. Spontaneously contracting engineered heart tissues (EHTs) were reconstituted by growing dissociated chicken embryo cardiomyocytes in collagen matrices. Twitch and baseline tensions were recorded at precisely controlled levels of tissue strain. The EHTs showed a steep increase in twitch tension from 0.47 +/- 60.02 to 0.91 +/- 60.02 mN/mm(2) as they were stretched at a constant rate (2.67% per min) from 86% to 100% of the length at which maximum twitch force was exerted. In response to a sudden stretch (3.3%), the twitch tension increased gradually (similar to 60 s) in a Gd3+-sensitive manner, suggesting the presence of stretch-activated Ca2+ channels. A large difference in baseline tension between lengthening (loading) and shortening (unloading) was also recorded. Disruption of nonsarcomeric actin. laments by cytochalasin D and latrunculin B decreased this difference. A simple mechanical model interprets these results in terms of mechanical connections between myocytes and nonmuscle cells. The experimental results strongly suggest that regulation of twitch tension in EHTs is similar to that of natural myocardium.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据