4.7 Article

Performance of vibration-based techniques for the identification of structural damage

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1475921706067738

关键词

vibration-based damage detection; structural health monitoring; modal residual vector; matrix update method; quadratic nonlinear optimization

向作者/读者索取更多资源

Early detection of damage is of special concern for civil engineering structures. If not identified in time, damage may have serious consequences, both safety related and economic. The traditional methods of damage detection include visual inspection or instrumental evaluation. A comparatively recent development in the health monitoring of civil engineering structures is vibration-based damage detection. Vibration characteristics of a structure, that is, its frequencies, mode shapes, and damping are directly affected by the physical characteristics of the structure including its mass and stiffness. Damage reduces the stiffness of the structure and alters its vibration characteristics. Therefore, measurement and monitoring of vibration characteristics should theoretically permit the detection of both the location and severity of damage. However, in practice, a number of difficulties persist in vibration-based damage identification. As a result, most of the damage identification algorithms fail when applied to practical civil engineering structures. This article presents a survey of some of the more commonly used algorithms and describes the conditions under which they may or may not work. The success of individual algorithms is measured through computer simulation studies. It may, however, be noted that additional practical difficulties that cannot entirely be reproduced through computer simulation exist, which makes vibration-based damage identification a challenging field with many unanswered questions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据