4.5 Article

Periplocoside E inhibits experimental allergic encephalomyelitis by suppressing interleukin 12-dependent CCR5 expression and interferon-γ-dependent CXCR3 expression in T lymphocytes

期刊

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.106.105445

关键词

-

向作者/读者索取更多资源

Periplocoside E (PSE) was found to inhibit primary T-cell activation in our previous study. Now we examined the effect and mechanisms of PSE on the central nervous system (CNS) demyelination in experimental allergic encephalomyelitis (EAE). C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein (MOG) were treated with PSE following immunization and continued throughout the study. The effect on the progression of EAE and other relevant parameters were assessed. PSE reduced the incidence and severity of EAE. Spinal cord histopathology analysis showed that the therapeutic effect of PSE was associated with reduced mononuclear cell infiltration and CNS inflammation. As reverse transcription-polymerase chain reaction analysis showed, PSE decreased the CD4(+), CD8(+), and CD11b(+) cell infiltration. T cells from lymph nodes of MOG-immunized mice expressed enhanced levels of CCR5 and CXCR3 mRNA compared with T cells from normal mice. However, CCR5 and CXCR3 expressions were suppressed in T cells from PSE-treated mice. In vitro study also showed PSE inhibited interferon (IFN)-gamma-dependent CXCR3 expression in T cells through suppressing T-cell receptor (TCR) ligation-induced IFN-gamma production, whereas it inhibited interleukin (IL)-12-dependent CCR5 expression through suppressing IL-12 reactivity in TCR-triggered T cells. As a result, the initial influx of T cells into CNS was inhibited in PSE-treated mice. The consequent activation of macrophages/microglia cells was inhibited in spinal cord from PSE-treated mice as determination of chemokine expressions (CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL10). Consistently, the secondary influx of CD4(+), CD8(+), and CD11b(+) cells was decreased in spinal cords from PSE-treated mice. These findings suggest the potential therapeutic effect of PSE on multiple sclerosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据