4.8 Article

Fe(0) nanoparticles for nitrate reduction: Stability, reactivity, and transformation

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 40, 期 17, 页码 5514-5519

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es0525758

关键词

-

向作者/读者索取更多资源

The pyrophoric character of zerovalent iron nanoparticles and cumbersome handling of this material has been a drawback in practical applications, despite the expectation of an enhanced reactivity. We have been interested in how the iron nanoparticles can gain stability in air without significantly sacrificing reactivity. The freshly synthesized iron nanoparticles ignited spontaneously upon exposure to air. However, when exposed slowly to air, an similar to 5nm coating of iron oxide was formed on the surface of particles. The oxide shell did not thicken for at least two months, indicating no sign of further corrosion of iron particles. The reactivity studies on nitrate reduction showed that the freshly synthesized iron reacted at the fastest rate. After formation of the oxide shell the rate constants decreased by ca. 50% of that of fresh iron, but were still higher than that of commercial grade micro- or milli-sized iron powder. Nitrate (50 ppm/350 mL) can be recharged 6 times into a bottle containing 0.5 g of iron nanoparticles. The reduction rate of the second cycle was the fastest among the six cycles, which can be attributed to the increase of surface area and the fresh iron surfaces that were bared by the dissolution of oxidized iron species on the surface. The oxidized iron was transformed to crystalline magnetite (Fe3O4) in solution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据