4.6 Article

Equations of motion approach to decoherence and current noise in ballistic interferometers coupled to a quantum bath

期刊

PHYSICAL REVIEW B
卷 74, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.74.125319

关键词

-

向作者/读者索取更多资源

We present a technique for treating many particles moving inside a ballistic interferometer, under the influence of a quantum-mechanical environment (phonons, photons, Nyquist noise, etc.). Our approach is based on solving the coupled Heisenberg equations of motion of the many-particle system and the bath, and it is inspired by the quantum Langevin method known for the Caldeira-Leggett model. As a first application, we treat a fermionic Mach-Zehnder interferometer. In particular, we discuss the dephasing rate and present full analytical expressions for the leading corrections to the current noise, brought about by the coupling to the quantum bath. In contrast to a single-particle model, both the Pauli principle as well as the contribution of hole-scattering processes become important, and are automatically taken into account in this method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据