4.7 Article

Relationship between DNA methylation and histone acetylation levels, cell redox and cell differentiation states in sugarbeet lines

期刊

PLANTA
卷 224, 期 4, 页码 812-827

出版社

SPRINGER
DOI: 10.1007/s00425-006-0267-3

关键词

antioxidant; histone acetylation; methylcytosine; morphogenesis; epigenetic; sugarbeet (Beta vulgaris L. altissima)

向作者/读者索取更多资源

In order to evaluate the permanent chromatin remodeling in plant allowing their high developmental plasticity, three sugarbeet cell lines (Beta vulgaris L. altissima) originating from the same mother plant and exhibiting graduate states of differentiation were analyzed. Cell differentiation has been estimated by the cell redox state characterized by 36 biochemical parameters as reactive oxygen species steady-state levels, peroxidation product contents and enzymatic or non-enzymatic protective systems. Chromatin remodeling has been estimated by the measurement of levels of DNA methylation, histone acetylation and corresponding enzyme activities that were shown to differ between cell lines. Furthermore, distinct loci related to proteins involved in cell cycle, gene expression regulation and cell redox state were shown by restriction landmark genome scanning or bisulfite sequencing to display differential methylation states in relation to the morphogenic capacity of the lines. DNA methylating, demethylating and/or histone acetylating treatments allowed to generate a collection of sugarbeet cell lines differing by their phenotypes (from organogenic to dedifferentiated), methylcytosine percentages (from 15.0 to 43.5%) and acetylated histone ratios (from 0.37 to 0.52). Correlations between methylcytosine or acetylated histone contents and levels of various parameters (23 or 7, respectively, out of 36) of the cell redox state could be established. These data lead to the identification of biomarkers of sugarbeet morphogenesis in vitro under epigenetic regulation and provide evidence for a connection between plant morphogenesis in vitro, cell redox state and epigenetic mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据