4.6 Article

Optical and structural properties of GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi-quantum wells

期刊

JOURNAL OF APPLIED PHYSICS
卷 100, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2234812

关键词

-

向作者/读者索取更多资源

GaN nanopillar and nanostripe arrays with embedded InGaN/GaN multi-quantum wells (MQWs) were fabricated by holographic lithography and subsequent reactive ion etching. Etch related damage of the nanostructures was successfully healed through annealing in NH3/N-2 mixtures under optimized conditions. The nanopatterned samples exhibited enhanced luminescence in comparison to the planar wafers. X-ray reciprocal space maps recorded around the asymmetric (10 (1) over bar5) reflection revealed that the MQWs in both nanopillars and nanostripes relaxed after nanopatterning and adopted a larger in-plane lattice constant than the underlying GaN layer. The pillar relaxation process had no measurable effect on the Stokes shift typically observed in MQWs on c-plane GaN, as evaluated by excitation power dependent photoluminescence (PL) measurements. Angular-resolved PL measurements revealed the extraction of guided modes from the nanopillar arrays. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据