4.6 Article

AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in Arabidopsis thaliana roots

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 35, 页码 25532-25540

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M601062200

关键词

-

向作者/读者索取更多资源

dIron acquisition in Arabidopsis depends mainly on AtIRT1, a Fe2+ transporter in the plasma membrane of root cells. However, substrate specificity of AtIRT1 is low, leading to an excess accumulation of other transition metals in iron-deficient plants. In the present study we describe AtIREG2 as a nickel transporter at the vacuolar membrane that counterbalances the low substrate specificity of AtIRT1 and possibly other iron transport systems in iron-deficient root cells. AtIREG2 is co-regulated with AtIRT1 by the transcription factor FRU/FIT1, encodes a membrane protein, which has 10 putative transmembrane domains and shares homology with vertebrate Fe2+ exporters. Heterologous expression of AtIREG2 in various yeast mutants, however, did not demonstrate an iron transport function. Instead, expression in wild-type and nickel-sensitive cot1 yeast cells conferred enhanced tolerance to elevated concentrations of nickel at acidic pH. A role in vacuolar substrate transport was further supported by localization of AtIREG2-GFP fusion proteins to the tonoplast in Arabidopsis suspension cells and root cells of intact plants. Transgenic plants overexpressing AtIREG2 showed an increased tolerance to elevated concentrations of nickel, whereas T-DNA insertion lines lacking AtIREG2 expression were more sensitive to nickel, particularly under iron deficiency, and accumulated less nickel in roots. We therefore propose a role of AtIREG2 in vacuolar loading of nickel under iron deficiency and thus identify it as a novel component in the iron deficiency stress response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据