4.7 Article

Optimal motion planning for nonholonomic systems using genetic algorithm with wavelet approximation

期刊

APPLIED MATHEMATICS AND COMPUTATION
卷 180, 期 1, 页码 76-85

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.amc.2005.11.172

关键词

-

向作者/读者索取更多资源

An optimal motion planning scheme using genetic algorithm with wavelet approximation is proposed for nonholonomic systems. The motion planning of nonholonomic systems can be formulated as an optimal control of a driftfree system. A cost function is introduced to incorporate the control energy and the final state errors. The control inputs are determined to minimize the cost functional. By using the method of wavelet, the infinite-dimensional optimal control problem is truncated to a finite-dimensional one based on the wavelet bases. The genetic algorithm is employed to solve a feasible trajectory satisfying nonholonomic constraints. The proposed scheme is applied to a free-floating robot consisting of two one-link arms connected to a main base via revolute joints. The numerical results demonstrate that the genetic algorithm with the wavelet approximation is an effective approach to steer a nonholonomic system from its initial state to its final state. (c) 2006 Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据